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INTRODUCTION

In this paper we study the behavior of a queueing
system which arises in the study of certain communication
networks. Specifically we study a queueing phenomenon which
arises with the SENET network, as described by Coviello
and Vena (1975) or Barbacci and Oakley (1976). This network
allows for both voice and data messages to be transmitted
over the same channels by using a special type of integrated
circuit and packet-switched multiplexor structure. The two
classes of traffic have substantially different performance
requirements. Voice messages tend to possess great redundancy,
and hence not to be sensitive to channel error rates, while
data is very sensitive to channel error, having essentially
no redundancy. Voice messages on the other hand have critical

timing requirements and cannot be queued, while data is




relatively insensitive to timing and can be queued. Addition-
ally, voice messages tend to be very long relative to data
messages which can be broken up into smali packets. These
special requirements have led to the following queueing net-
work. A node of the network consists of ¢ + v channels or
servers. The voice messages are assigned to v channels and
do not queue. Thus the voice messages operate as a loss
system. Data messages may use c¢ channels exclusively and
any unused voice channels; however, voice preempts data using
voice channels. Data messages are queued if necessary.
Typical performance measures that one may wish to calculate
include the loss rate of voice traffic and the mean data
queue length.

We make standard probabilistic assumptions. Specifically,
we assume voice traffic arrives according to a Poisson(})
process and each voice message has an independent exponential(yn)
service time. Data messages are assumed to have independent
exponential(n) service times and arrive according to a Poisson(§)
process. With these assumptions voice is an M/M/v/v loss
system, and data is an M/M/S system where S = ¢ + v - V(t)
with V(t) = number of voice messages in service. The
stochastic process {(X(t),v(t)), t > 0} is Markov with
state space z¥ x (0,1,...,v] where X(t) = data system size
at time t. One can easily write the Kolmogorov forward
equations appropriate for this system; however, these equations
do not yield a closed form solution. To describe this system
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one must either numerically solve the forward equations or
introduce approximations.

This system has been studied previously by a number
of researchers including Halfin and Segal (1972), Halfin (1972),
Fischer and Harris (1976), Bhat and Fischer (1976), Fischer
(1977), Chang (1977), and Gaver and Lehoczky (1979a,b). The
last two papers introduce a "fluid flow" and a diffusion
approximation and derive explicit formulas for data queue
behavior. These papers focus on the important case in which
Pq = §/n > ¢. In such a situation the data messages must
have access to voice channels for the system to be stable.
Furthermore, it was assumed that n/y was large, say 104.
Under these circumstances the data flow could be treated

deterministically. Suppose we define = A/u and

Py
q= (o;/v:)/Z‘j;o 0/3t, the Erlang B blocking probability.

The total traffic intensity on the ¢ + v channels is given

by p4q + pyfl-q), or we could define o = (o4 + 0y,(1-q))/(c+v).
A heavy traffic approximation can be derived for this case

p M 1. Such an approximation was derived in Gaver and
Lehoczky (1979b) assuming n/u was large; a Wiener process
with reflecting boundary was found appropriate. In this
paper we derive a heavy traffic approximation for the system
without the fluid flow assumption that n/u is large.

The methodology is drawn heavily from the approach of Burman

(1979). In this approach one characterizes a Markov process
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by its infinitesimal generator. One next suitably normalizes
the process so that the generator converges to a limiting
infinitesimal generator (in this case to that of a reflected
Brownian motion). This convergence allows the conclusion that
the finite dimensional distributions of the normalized Markov
process converge. The diffusion approximation consists of
treating the actual process through its limiting behavior.

The details are somewhat complicated by the presence of a

boundary.




2.

be a bivariate Markov

Let {(X(t),v(t)), t > 0}

process with state space S = z¥ x {0,1,...,v} . Here

{v(t), t > 0} is marginally an M/M/v/v loss system with

arrival rate ) and service rate u. Conditional on V(t),

{x(t), t > 0} is an M/M/(c + v - V(t)) queueing system with
We say that the V

arrival rate § and service rate n.

process subordinates the X process. We let
TPy Py
1 -(1+Ov) Py
2 -(2+0.) Py
Q= LT ,
. oy
v-1 -(v-1+pv) p

the infinitesimal generator of the V process.

The generator of the (X,V) process is given by

.
Qf (x,k) + 6&(f(x+1,k) - f(x,k))

+ n(c+v-k) (£(x-1,k)-£f(x,k))

Af(x,k) = 1 if x> ctv-k
Qf(x,k) +6 (£(x+1,k) - £(x,k))

if x < c+v=k

it diden,

(2.1)

(2.2)




for f£:S » R continuous where

Qf (x,k) = ovf(x,k+1) - (k+pv) fix,k) + kf(x,k-1)

(2.3)

v2>2k>0

and f(x,-1) = f(x,v+l) = 0. Clearly Qf(x) = 0, that is Q
annihilates functions of x alone. We next normalize the

(X,V) process by defining X (t) = X(nt)#n and v (£) = V(nt).
One can calculate the generator of the Markov process

{(x (), V (£)), t > 0} having state space

s, = {0, 14, 2/7,... }x {0,1,...,v} to be

(an(x,k) +6n(fix + 1/n,k) - £{x,k))

+ nn(f(x - 14/n,k) - f(x,k))

if x b ——— — (2.4)
- vyn
Anf(x,k)=4 _
nQf (x,k) +8n(f(x + 14 n,k) - £(x,k))
+nn /Ax (f(x + 147,k) - £(x,k))
if x=0, 14/N,..., (cev-k) ¥/ .
\

We assume f(x,k) has three bounded derivatives in x
for each fixed k. With this assumption one can expand terms
in (2.4) in a Taylor series and rewrite as

6
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(
nQf (x,k) + nl/zfx(x,k) (6 =n (c+v=k) )

+ 3 £ (x,K) 6+ (cty-k))

+ O(n-l/z)

if x > (c+v-k)//n

A_f(x,k) = (2.5)
n

nof (x,k) + nl/zfx(x,k) (6 -nw'Tix)

+ 3 £,k @+ /AR + 0(n"H/?) :

if x=0, 1//n, ..., (c+v-k)//n

d

2
with £ (x,k) = x& £(x,k) and £ (x,k) = —a-z?f(x,k).

We ultimately wish to prove that the finite dimensional
distributions of {xn(t), t > 0} converge to those of a
Wiener process with reflecting barrier at the origin. This
can be restated in terms of semi-groups. We let {Tz, t > 0}
be the semi-group of operators associated with
{x (t), v ()), t >0} and {T:, t > 0} be that associated
with a Wiener process having reflecting barrier at 0. Let
g be a continuous function g:R' + R'. Knowledge of the

semi-group is equivalent to knowledge of the transition

functions by taking a sequence of g's which approximate

indicator functions. We wish to prove IT: g(x,k) - T: g(x)| +o0
as n + = for all (x,k). Here 'r’é g(x,k) = E(g(X,) 1% (0) = x,

vn(O) = k). The presence of the variable k prevents this
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from being done directly. The method we use is to construct
a convenient sequence of functions <gn>:=l which converge

in some sense to g. We write

IThg - Togl, < N(The) - Togll, + IThe - Tea,l,

+ lIThe, - (Too) I, (2.6)

where || | refers to the sup norm over Sn’ Both Tz and

n

OO . .
Tt are contraction semigroups.

<(T:g)n>:=l is the sequence of functions constructed
from T:g. Our goal is to show tha+ each of the three terms
on the right side of (2.6) converges to 0. The first and

second terms can be handled similarly. For any function g,

we must guarantee that the constructed <gn>:=l segquence

satisfies Hgn - an + 0. It will follow that H(T:g)n- T:gnn + 0.

Moreover, since {Ti, t > 0} is a contraction semi-group
Hng - Tx::gnlln < llg - gan which also converges to 0. The
sequence <gn>:=l will be chosen in such a way that the third
term converges to 0.

We focus on a convergence determining class of functions
g, those which are bounded and have three bounded derivatives.
For such a function g(x) we define

g, (x,k) = g(x) + 2= ulx,k) + & vix,k) (2.7

n n

1
%
|




where u and v have two bounded derivatives iﬁ x for
each fixed k. The functions u and v will be determined
explicitly later and are chosen to controi the third term in
(2.6). Clearly when g_ is defined by (2.7), lg -gl, = o(n"1/2)
and therefore converges to 0 as required.

One can apply the generator An to 9, to derive

~

:lu()q(x)+-x11/2

[Qu(x,k) + g'(x)(§ -n (c+tv-k))]

+ [Qv(ix,k) + ux(x,k)6'41(c+v-k))

+ 3 g"(x) 6 (c+v-k)) ] + o(n~1/%

if x > (c+v=-k)/#/n
Angn(x,k) =

1/2x7?

#nogf *+0l2[qu(x,k) + g' (%) (§- nn
1/2

+

[ov(x,k) + u (x,k) 6-nn'/2x) + 3 g"(x) 6 +nn!/%x))

o(n~1/2)

+

if x=0, 1//n,..., (c+v-k)//n

where ux(x,k) %; u(x,k). Recall that @ annihilates functions
of x alone, thus nQg(x) = 0. We want to have Angn(x,k)
converge to a finite limit and to have that limit be inde-

pendent of k. For this to occur, the nl/2

term must be
controlled and the functions u and v must be chosen in

such a way as to eliminate the variable k.

B U U
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The nl/2

coefficient in (2.8) can be rewritten by
adding and subtracting
v

kzo m g’ (x) (6 -n(ctv-k)) = -n(c+v) (1-p)g' (x) .

We next pick u(x,k) to be a solution of

Ou(x,k) = -(g' (x) n(pd-(c+v-k)) + g'(x) n{c+v){(1l-p)) i

= =g’ (x) n(k-pv(l-q)) (2.9)

When u(x,k) is any solution of (2.9), the coefficient of

the nl/z term in (2.8) becomes
-g' (x) n{c+v) (1-p) if x » SHVIK
- vn

1/2x - k) if 0 < x (< ctv-k

g'(x) n((c+v)p - n < —
/n

Equation (2.9) can be solved explicitly. Define

a, = -g' (x) n(k-pv(l—q))/u, so that (2.9) can be written as

-pv(u(x,k)-u(x,k-l))-(k-l)(u(x.k-l)-u(x,k-Z)) = a3 k=1,...,v

-v(u(x,v)-u(x,v-1)) = a, (2.10)

10
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Equation (2.10) has a solution since Ez=o na = 0,
where <"k>z=0 ig the stationary distribution associated

(pt/k!)/({¥=o pi/i!). The solution is

with Q, or L%

given by
kil
T.a, .
g 11 -9t l0nTy
ulx,k) - u(x,k-1) = 229 " - — k-1
Pvx-1 UPy K1
where
k
Tk = .Z ﬂi‘l"pv(l"Q)) and TV = 0.
i=0
Clearly

' (x)n X Tic1
ulx,k) = u(x,0) - 220§ 2=, 1<k v (21D

i=1 i-1
where u(x,0) is arbitrary. We let u(x,0) = % g'(x) so
k T,
wek) =gt lz~- VAL o ckev (212
Moy i=1 Ti-

For the choice of u specified by (2.12) we next wish
to insure that the limiting generator is independent of the
variable k. The function v is chosen to eliminate the
dependence on k. The O(1) term of (2.8) is given, for

x > (c+v-k)/vn, by

11
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1_n ¥ Tig
Qvi(x,k) + g"(x) T 121 il (8 =n (c+v-k))
v i=1 "i-

+ % g"({x) 6 +n(c+v-k)).
= Qv(x,k) + H(x,k).

Let H(x) = [/ o m H(x,k) and consider Qv(x,k)+ (H(x,k)-H(x))+H(x).

We now let vi(x,k) be any solution of
ov(x,k) = ~(H(x,k) - H(x)) . (2.13)

Equation (2.13) has a one-parameter family of solutions,
since Z:=0 m (H(x,k) - H(x)) = 0. When v(x,k) is chosen
to be any solution of (2.13), the 0(1) term of (2.3),
for x > (c+v-k)//n, will become H(x) and will therefore

be independent of k. It remains to calculate H(x).

v k T
" 1 _ n i-1
g (x) [kio‘nk {(}- *up z

v i=1l i-1

H(x)

) (6 =n (c+v-k))

+ %-(c+n(c+v-k))}]
[ v k T.
-1
= g"(x) [6- =4— J m -n(ctv-k)) ) == (2.14)
| WPy k2o K i=1 Ti-1
[ 2 v k T
i-1
= g"(x) |[6- 2= § ® (k-p_(1-q))
[ WPy k=0 XKV i=1 "i-1
sew o) ¥ F Tim
WPy k=0 K j21 Ti-1

12
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of summation.

fA(x) = g"(x)

o

= g"(x)

with Tv =0 or

H(x) = g"(x) n

For the functions

The third term is

..DE v-1 T, Vv _
8- Lo 71 pebey Mk Koy 2@+ 0l=p)

-
§ -

The second term can be rewritten by interchanging the order

0(1-p). We find

Uy

v=1 Ti

n?
Py i=0 i

N

(2.15)

3

n Vil T,
pq + — + 0(l-p) .
d Wy 20 My

u and v specified by (2.12)

and (2.13), equation (2.8) can be rewritten as

.
172

A g (x,k) =f

n1/2

I TN

+ ng"(x) [ Pg + =0

T WM DTS,

(1-p) (0+v) ng' (x)

2

WPy j=0 Ti

v-1l T
+-n[pd T X 0(1-0)] g"(x) + o(n"1/?

for x > (c+v-k)//n

(2.16)

nlic+v)p ~nt’2x-k1g" (%)
T 12

Py i=0 i
k T.
~ (c+v-k-n1/2x) LU ;i + O(n 1/2)
oy i=0 "i

for x < (c+v-k)/Vn

13
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We now introduce the "heavy traffic approximation.”

In order for the generator to converge to a limiting

-1/2)

generator we must have 1l-p = O(n . Specifically, we

assume p = p =1 - (8//h) for some 6 > 0. In this case,

nl/z(l-p) = 0, and (2.16) becomes
f

v=1 T?

. .
i=0 i

for x > (c+v-k)/¥n
Angn (x,k) =

1/2

nl(c+v)p-n x—k]nl/zg'(x)

n v=1 T,
+ ng" (x) Pq * o .zo :
v 1= 1

o i ]

for x < (C+v-k)/V/n

A 3
N

172

- (c+v-k-n

%
dlpl—]

n
X) ——
up i

<

.~

We now define a limiting generator A_ with domain

-6n(ctv) g’ (x) + n[pd + U%; ) —i] g"(x) + O(n

-1/2)

(2.17)

consisting of all functions g having three bounded derivatives

and g'(0) = 0. Let

n vil Ti
A_g(x) = ~bn(c+v) g'(x) + nlpq + — = {1 gqg"(x),
d wey 420 My

14
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A is the generator of a Markov process which

corresponds to a Wiener process with drift -6n(c+v), scale

2
v=l T
n v
2n [pd + Ty izo 7 ] /

and a reflecting barrier at 0. The O(n-l/z) terms involve
the first three derivatives of g which are bounded. 1It is
clear from a direct comparison of (2.16) and (2.18) that
|A g (x,k) - A gl +0 as n =+~ forall x>0 and k
arbitrary. 1In addition, g'(0) = 0 is necessary for the

generator to converge at x = 0. Unfortunately even assuming

g'(0) = 0,
2k 'rf
- - — -~ gq"(0) as n + «

rather than to 0. One needs a special argument to handle
this lack of convergence at the boundary.

We set out to prove the third term in (2.6) converges
to 0. Standard semi-group results (see Burman, 1979, p. 33)
give

t
(Teg), - Teg, = ! Ty g((A W) - Aw )ds (2.19)

where w = w(t,x) = T:q(x). Recall that W, =W +(1//n)u+(l/n)v
with u and v defined by (2.12) and (2.13) with g replaced

by w. It follows that

15
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n o0
HTtgn-(Ttg)an

t
Hé T:_S((Aww)n-nww+amw-Anwn)dan

L t o

< (I) ITe_g((A W) _-A W)l ds + llg t-g (AW-A w )as|
t t -

< g A w - wl ds + N(!) t-g A w-A w )as| .

1/2

The first term is clearly O(n ~/€). It remains to

show that the second is O(n-l/z) as well. We have shown

-1/2, except at the boundary where it

A w - Anwnl = O(n
is 0(1). We split the integral into two parts, for one
of which the process is away from the boundary, and for the

3 other, near the boundary. The integral away from the boundary

o(n-l/z)

has an integrand which is . The integral near the

{ -
boundary is also O(n 1/2)

since under a heavy traffic
assumption the process is rarely near the boundary. The
details are merely summarized here; they are based on the
ideas of Burman (1979).

let Ion be the indicator function of

c+v-k
[ <5

and Iln be the indicator of
16
c - - . — - ‘lz'w’i:;&;}v&s :




[ cv-k -)
/n
We have

t
ng Ty g (AW = A w )dsl

t t
< To_g (AW - Aw )T, dsll I T _g(Aw - AW )T as||
t t
S (agw-Aaw)I asl + AW - Aw il ug L T
0

The first term is O(n’l/z), since IA”w - Ahwnl = o(n-l/z) off
the boundary. The factor |[A w - AnwnH = 0(1), thus it remains

to show that

t

“g Tt -S On

dSH = o(n"1/2)

This gives the total time in [0,t] spent near the boundary.

We bound

Wy ™ asll

0 t-S 0n

by first introducing a function h(x) not in the domain of
A_. We let h(x) have bounded support, be infinitely
differentiable and be given by h(x) = x for x near 0.
One can construct hn(x) using (2.7) and apply An to

hn to find

17

[
ihﬁﬁkam&ﬁw;




o

c+v-k

0(1) if x>
‘ /n
Anhn = {(2.20)
n/2 ((c+v)p-nl/2x-k) + 0(1) if x ¢ Stk
/n
One has

n 0
t t
n
= é TGA h I, dS + g TgAnhnIOndS.

It follows that

t

t
n
"é TSAnhnIOnds”n < ”T:hn hn”n + ”g TgAnhnIInds”n

< 2lhl, + o) .

t
We have shown | [ TgAnhnIOndAHn to be bounded in n. An
0

application of (2.2) shows

t
n - 172
né TsAnhnIOndAHn n

172

t
nt(cev)p = n™/“x - k + o) lIIf TgY, asii
0

t
is bounded in n. It follows that | TgIo a8l = o(n™1/?).
0

18




This finally concludes the argument which shows
n oo ~1/2
IT3g, - (Tea l, = 0™
We have thus shown that the finite~-dimensional distri-
butions of the (xn(t)' Vn(t)) process converge to those

of a Wiener process with drift -6n(c+v) scale

2

v=-1T
n i

nleg+ =0 1 =),
d Wy oo My

and reflection at 0. The diffusion approximation treats
xn(t) as though it were such a Wiener process. For instance,
the limiting Wiener process has a stationary exponential dis-

tribution with parameter

8 (c+v)
v-1 .
n 2
oy + —— Y (TS/T))
d UOV i=0 1 1

This is a distribution for X(nt)/Yn and suggests X(t)
will have a steady state distribution given approximately

by an exponential with parameter

=1| = |
e e

n vfl
(c+v) (l-p) o)  —
d HP.. .
v i=0

The steady state mean data gueue length would then be

19
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v-1 Ti
0.+ oi
EX(8)) = ——"Pv im0 Ti (2.21)

{(c + v)(1-p)

It is interesting to consider the special case ¢ = 0,
v = 1 where the two types of traffic use the same channel.
\ -1
Under heavy traffic o = o4 +ov/(1+pv), 80 04X (1+pv) .
The mean data queue length derived from the diffusion approxi-

mation (2.21) will be

ar 2=} [ s fafa v tu,
¥ (140 1=p ¥ (140 )

The latter is the exact expression derived by Fisher (1978)
for this case. The expression (2.21) represents a generaliza-
tion of the results of Gaver and lLehoczky (1979b). 1In this
paper, a diffusion approximation is given based on the fluid
flow assumption for the data. For this case the result is the

same except that the scale is given by

2 2
n- v-1 Ei
Moy i=0 i
rather than 2
v=1 .
nlo, + — A}
d Wy j=o My

The results derived in this paper therefore definitely generalize
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the results of Gaver and Lehoczky (1979b) since the variability
in the data queue is now included. When n/p is large, the
second term dominates, and the fluid floﬁ approximation is
satisfactory.

The Wiener process approximation for the X(t) process
provides a method for studying the dynamics of that process.
For instance, suppose the data queue were at level x at
time t where x 1is large. One might wish to study the time
that elapses until the gqueue becomes empty. This is essentially
the duration of the busy period under heavy traffic and
corresponds to a first-passage time for a Wiener process. Let
us denote it by Tx. Straightforward martingale arguments

provide for its transform

-sT 2
Xy - X o_om _ m
E(e ) = exp [(0-) ) S+ 2s ] (2.22)
where
m = 8lctv)n ~ nl/2(1-p) (c4v)n
2
2 n-1 T
o _ n i
T ="\Pa*t oo T [

v i=0 i
It is also easy to find the mean first-passage time

E(Tx) = x/m (2.23)
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One might also be interested in the area beneath the
sample path until emptiness occurs, since this area represents
the total time waited by all data customers involved in the
busy period. 1If A, represents this area, simple backward

equation arguments give

xz 02
B = 55+ g X (2.24)

where m and 02 are given in (2.22).
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